OFFSHORE WIND TURBINE FOUNDATIONS

Christophe PEYRARD

EDF R&D - LNHE

Laboratoire d'Hydraulique St Venant

WIND RESOURCE IN EUROPE

From the European Wind Atlas. Copyright © 1989 by Risø National Laboratory, Denmark

400- 700

< 400

4.5-6.0

< 4.5

100-250

< 100

5.0-6.5

< 5.0

150-300

< 150

5.5-7.0

< 5.5

200-400

< 200

6.0- 7.5

< 6.0

7.0- 8.5

< 7.0

3.5-4.5

< 3.5

50-100

< 50

4.5-5.5

< 4.5

100-200

< 100

5.0 - 6.0

< 5.0

150-250

< 150

5.5-7.0

< 5.5

200-400

< 200

250- 450

< 250

6.5- 8.0

< 6.5

300- 600

< 300

SAINT-VENANT

OFFSHORE WIND ENERGY

OBJECTIVES OF THE PRESENTATION

Offshore Wind Energy

- Development / General context
- Bottom fixed context in France
- Floating context in France
- Bottom fixed / Floating foundations
 - Engineering
 - Construction
 - Installation
- Technical aspects and challenges

OFFSHORE WIND CONTEXT

OFFSHORE WIND - HISTORY

- 1st offshore wind turbine installed in Sweden in 1991 (Nogersund; 220kW Wind World W2500; Ø 25 m).
- 1st offshore wind farm in Denmark in 1992 (off Vindeby; 11 x 450 kW Bonus B35/450). Water depth: 2 4 m; gravity foundation; 3km from shore.
- Until 2001, various developments off Denmark, Sweden and Netherlands (turbines P< 1MW).
- Denmark started to develop large offshore wind farms:
 - □ Middelgrunden (2001): 40MW; 20 x Bonus B76 2MW turbines.
 - □ Horns Rev I (2002): 160 MW ; 80 x Vestas V80-2MW
 - Nysted (2003): 166 MW; 72 x Siemens SWT 2.3MW turbines
- Since 2003, the UK then Germany and Belgium have launched large offshore wind projects...

OFFSHORE WIND DEVELOPMENT

TURBINES SIZE EVOLUTION

EUROPEAN OFFSHORE WIND TARGET 2020

OFFSHORE WIND DEVELOPMENT - MAIN STEPS

Origination	Development	Construction	Operation
3			
 Initial screening of potential sites Preliminary evaluation of seabed and wind conditions Securing of project and property rights Application for permission 	 Wind Assessment/ Ground Survey Environmental Impact Assessment (EIA) Technical planning Securing of grid connection Receiving of construction permit 	 Component contracts signed Installation of foundations and wind turbines Connection to onshore grid Commissioning and start of operation 	 Hands-on and pro- active operation Regular check and maintenance of technical equipment Repairs, overhauls and upgrades At end of lifetime: decommissioning or

BOTTOM FIXED FOUNDATIONS

- Civil Engineering definition
 - Under ground part of the structure
 - Soil-structure boundary
 - Soil mechanics / Geotechnical field
 - Definition used by some french utilities

- Offshore wind field definition

 - □ Soil-structure and water-structure boundaries
 - □ Soil mechanics and Fluid Mechanics
 - Definition generally adopted in UK, Germany and many foreign utilies

OFFSHORE WIND – KEY DATA 2013

BOTTOM FIXED FOUNDATION TYPE OF FOUNDATIONS

- OWT foundations main types :
 - Monopile
 - Tripod
 - Jacket
 - Gravity Based Foundation (GBF or GBS)

Gravity-based Structure (GBS)

- Usually, the choice of the structure depends on the water depth and the sea bed (rock, sand...)
 - Monopile typically until 20/30m
 - Tripod typically until 30/40m
 - □ Jacket typically until 50/60m
 - □ GBS typically until 30/50m

FLOATING FOUNDATIONS

JAPANESE PROJECTS : SEMI-SUB AND SPAR (2013)

Fukushima (Mitsui/Hitachi)

Fukushima

- Design for use with a 2MW turbine
- Width 58 m
- Total column length 32 m of which 16 mwill be submerged
 - Hub height 60 m

GOTO OWT (Toda/Hitachi)

Full Scale:

- 2MW downwind turbine with 80m rotor diameter
- Total spar length 172m
- Total weight incl. Turbine 3,400 t
- Steel with pre-stressed concrete
- Steel chain mooring, 3 points, catenary, attached to drag anchors

Image Source: Kyoto University

JAPANESE PROJECTS : SEA ANGEL (2015)

Fukushima 7 MW (MHI)

Bigest Offshore Wind turbine installed

ADVANCED SPAR 5 MW (2016)

- Last part of Fukushima forward project
 - □ 5MW Turbine
 - Hitachi
 - Downwind type
 - Advanced-spar concept
 - Japan Marine United
 - Low draft solution (30m)
 - Large sections (50m)

The floater lost control and leaned on 9 May

Carried to Sumoto port on 2 May

The floater recovered stability again on 14 May

OFFSHORE WIND IN FRANCE

FRANCE

- 2004 : 1st Call for Tender "Centrales Eoliennes en mer". 1 site awarded: Côte d'Albâtre (Velettes – Enertrag 105 MW with Areva). NIMBY issues... Cancelled.
- 2011 : 1st Round (Call for Tender) 3 GW -5 sites (Le Tréport - Fécamp - Courseulles - St Brieuc et St Nazaire). 4 sites awarded 1.9 GW. Construction: 2019-2020.
- 2013 : 2nd Round 1 GW 2 sites (Le Tréport et lles d'Yeu & de Noirmoutier). Construction : 2021-2023.

INDUSTRIAL SIZE PROJECTS

COUT DE L'ELECTRICITE

Réduire le coût de l'électricité

TYPICAL ONSHORE & OFFSHORE WIND COST BREAKDOWN

Capital cost breakdown (top) & share of capital in levelized cost of electricity (bottom)

CAPEX = Capital Expenditure

OPEX = Operational Expenditure

CoE = Cost of Electricity

$$CoE = \frac{CAPEX + OPEX}{PRODUCTION}$$

Réduire le coût de l'électricité pour être compétitif lorsque les subventions étatiques s'arrêteront

Un enjeu majeur!

PRINCIPAUX RISQUES LIES A LA CONSTRUCTION

Lever les risques

Résultat du sondage (2012-2013) sur les principaux risques en phase construction, vus par les développeurs de projets en Europe (*Utilities*) :

FRENCH FLOATING PROJECTS ADEME "AAP" : APRIL 2016

4 sites selected on the Fench coasts for precommercial farms 20/30 MW by project (3-6 turbines) Consortiums (Turbine/Floater/Utility)

2 PROJECTS ALREADY AWARDED

- Ile de Groix (Atlantic) 24 MW
 - EOLFI
 - □ General Electric (ex-Alstom) / 6MW turbine
 - DCNS
- Gruissan (Languedoc) 24 MW
 - Quadran
 - □ Senvion / 6 MW turbine
 - DIDEOL

- Demonstrator project
 - □ IDEOL 2MW
 - Under construction by Bouygues TP
 - □ SEMREV 2017

LABORATOIRI

SAINT-VENAN

Will be the first Offshore Wind turbine in France !

BOTTOM FIXED / FLOATING FOUNDATIONS

BOTTOM FIXED FOUNDATIONS

BOTTOM FIXED FOUNDATION DESIGN METHODOLOGY

- Aerodynamic forces
 - Coming from the turbine
 - Provided by the turbine manufacturer
- Hydrodynamic forces
 - Current
 - Waves
- Soil response
 - Depending on the sea bed type
 - Depending on the foundation type

Transition piece

- Link between sub-structure and Turbine/Mast system
- Boundary between hydrodynamic design and aerodynamic design

BOTTOM FIXED FOUNDATION

TYPE OF FOUNDATIONS 1/3

- OWT foundations main types :
 - Monopile
 - Tripod
 - Jacket
 - Gravity Based Foundation (GBF or GBS)

- Usually, the choice of the structure depends on the water depth
 - and the sea bed (rock, sand...)
 - Monopile typically until 20/30m
 - Tripod typically until 30/40m
 - Jacket typically until 50/60m
 - GBS typically until 30/50m

BOTTOM FIXED FOUNDATION TYPE OF FOUNDATIONS 2/3

- Repartition of OWT foundations
 - □ End 2012 figures
 - Monopile is the most used foundation type
 - Denmark
 - Germany
 - UK
 - GBF is significant
 - □ Tripod/Tripile is not common

COMPLEX DESIGN...

Copyright © EDF-2015 SAINT-VENANT

BOTTOM FIXED FOUNDATION HYDRODYNAMIC MODELS - FORCES

- Hydrodynamic loads model Standards
 - Semi-Empirical approach (Morison formula)
 - Thin bodies approximation

$$F = C_M \cdot \rho \pi \frac{D^2}{4} \dot{U}(t) + \frac{1}{2} \rho \cdot C_D \cdot D \cdot U \cdot |U|$$

BASIN TESTS HYDRODYNAMIC FORCES EVALUATION – MODEL CALIBRATION

Froude scaling

- Inertia forces conserved
- Reynolds similitude lost
- □ State of the art of the O&G industry

Typical scale

- □ Between 1/20th and 1/50th
- □ Water depth : 40m => 1m to 2m
- □ Structure diamter : 7m => 15 to 40 cm
- □ ECN, Oceanide, IFREMER...

MONOPILE INSTALLATION L

MONOPILE PILING

- Hydro-hammer or vibro-driving devices are used.
- Noise impact on sea mammals: key issue!
- Multi-Hammer are used when diameter > 7.5 m

SCOUR PROTECTION

Copyright © EDF-2

JACKET

- Jacket : steel lattice structure (welded pipes Ø 0.5 1.5m) from Oil & Gas industry. ~ 1000tons (> 1km welding!).
- Structure suitable for deep water (< 50-60 m) with heavy turbines (> 5 MW). Small leg monopiles are driven in the seabed (Ø 1 – 2.5m).
- 1st offshore wind installation: demonstration site Beatrice in Scotland in 2006 (2 x REpower 5 MW – 45 m water depth).

Idvantages	Disadvantages			
ightweight and stiff structure	Complexity of fabrication			
Better global load transmission	Large number of joints required			
compared to monopiles	compared to other latticed structures			
arge variations in water depth can	Logistical issues due to the			
e covered through cantilevering	templates (pre-piling case)			
iles or modifying the geometry				
lo scour protection required	Complex connection to transition			
Structural redundancy	High manufacturing lead-times			
ow soil dependency	No standardized design that leads to			
.ow son dependency	long certification processes			
Good response to wave loads. Little				
ensitivity to large waves and limited	Blade			
lynamic amplifications of loads due	Nanalia			
o high stiffness	Nacelle			
imited storage area compared to				
GBF	Support tower			
aster fabrication compared to GBFs				
serial production)				
	Transition piece			
Better quality control	A10			
	Substructure			
asy decommissioning				
	Coloright GrEDF-201 LABORATO			
	DHIDHADCO			
	SAINTVENA			

TRIPOD INSTALLATION (ALPHA VENTUS)

Tripods being welded

Tripod up-ended for shipping

Tripods arriving at Wilhelmshaven port

Heavy-lift crane ship on site

Tripod foundation lowered to seabed

Installation complete

VARIOUS GBS CONCEPTS

Туре	Features	Example		
Self-Buoyant (" <i>Floating</i> ")	GBS can be floated out and towed to the offshore site using standard tugs. At the site, GBS is filled with ballast.	Gravitas		
Auxiliary Buoyancy ("Semi-floating")	Special transport vessel required for buoyancy support. This concept helps reduce concrete volume. Additional ballasting at site.	Strabag		
Crane Lowered	GBS cannot float. A heavy lift crane vessel is required. A large transportation barge + heavy crane vessel can also be used. Possible additional ballasting at site.	Rambiz-DEME		

TURBINE INSTALLATION

TURBINE INSTALLATION

TURBINE INSTALLATION

INSTALLATION – HEAVY OFFSHORE VESSELS

FLOATING FOUNDATIONS TECHNOLOGIES

FLOATING FOUNDATION WHY?

FLOATING FOUNDATION WHY?

- Going to deeper waters
 - Bottom fixed foundation : maximum ~ 50-60 m water depth (structure size, installation vessel: crane, Jack Up...).
- European Areas
 - Offshore Norway, Scotland, Ireland
 - Mediteranean Sea
- Technology from Oil & Gas offshore.
- Installation should require less specific vessels
- Possibility to assemble both turbine and platform onshore (port) and tow them out on site.
- Challenges
 - Plateform motions
 - Moorings
 - Dynamic electric cable
 - Further from shore means higher winds but also higher sea states

	10 m		25 m		50 m		100 m		200 m	
m s ⁻¹	Wm^{-2}	$m s^{-1}$	Wm^{-2}	${\rm ms^{-1}}$	Wm^{-2}	$m s^{-1}$	Wm ⁻²	${ m ms^{-1}}$	Wm^{-2}	
> 8.0	> 600	> 8.5	> 700	> 9.0	> 800	> 10.0	> 1100	> 11.0	> 1500	
7.0-8.	350-600	7.5-8.5	450-700	8.0-9.0	600-800	8.5-10.0	650-1100	9.5-11.0	900-1500	
6.0-7.0	250-300	6.5-7.5	300-450	7.0-8.0	400-600	7.5- 8.5	450- 650	8.0- 9.5	600- 900	
4.5-6.) 100-250	5.0-6.5	150-300	5.5-7.0	200-400	6.0- 7.5	250- 450	6.5- 8.0	300- 600	
< 4.5	< 100	< 5.0	< 150	< 5.5	< 200	< 6.0	< 250	< 6.5	< 300	

Fukushima Forward Pre-commercial farms

EXAMPLES OF FLOATING PROJECTS...

STABILITY OVERVIEW

- Stability consists of comparing
 - Heeling moment due to wind
 - Restoring forces due to buoyancy
- Wind heeling moment
 - Rotor thrust
 - Point of application

STABILITY OVERVIEW

Hydrostatic stifness

STABILITY APPLICATION

SPAR SOLUTION

KB-KG=GB Low contribution

Stability from the distance between Center of Gravity and Center of buoyancy

STABILITY APPLICATION

BARGE SOLUTION

STABILITY ADDITIONAL CASES

- In addition, you need to consider
 - Damaged cases, when the floater is partilly flooded
 - Towing and installation phases

FLOATING PLATEFORMS TYPES OF FLOATERS

Generally, 4 types of floaters are considered

FLOATING PLATEFORMS DESIGN PROCESS

- Metocean study
- Stability
 - Plateform counterbalance wind heeling moment

Motions

- Maximum motions&accelerations to insure system resistance
- Maximum motions for power performance
- Station-Keeping
 - Insure IAC security
 - Avoid drift

Installation

 Is the plateform easy to build / install / maintain

MOTIONS AND ACCELERATIONS ANALYSIS OVERVIEW

1000 1500

0.15 0.20 0.25 0.30

0.35

0.10

- Floating offshore wind plateforms motions due to
 - Wind: stochastic phenomenon
 - Waves : irregular sea states
 - Current
 - Plateform / Structure natural modes

Non-linear moorings
 Non-linear forces

Keep in mind :

~10 000 load cases

- Aerodynamic models
- Hydrodynamic models
- Structural models

IEA Wind Annex 23 / NREL

MOTIONS AND ACCELERATIONS ANALYSIS MODELLING APPROACH - HYDRODYNAMICS – POTENTIAL FLOW

- Hydrodynamic models used in most of the FOWT projects
 - Potential flow + no viscosity
 - Irrotational
 - No drag forces
 - Linear hypothesis
 - Small waves
 - Small motions
- Differences between bottom fixed and floating
 - Need for buoyancy/stability leads to « Large » structures
 - Thin bodies hypothesis not fully respected
 - Structure experiences significant motions
 - Need to model waves motions interactions
 - Wave-Structure intercation

Diffraction / Radiation approach

MOTIONS AND ACCELERATIONS ANALYSIS MODELLING APPROACH – HYDRODYNAMICS - POTENTIAL FLOW

- Numerical tools
 - Comercial
 - WAMIT
 - DIODORE
 - HYDROSTAR
 - AQWA
 - Non-commercial
 - NEMOH (Free Open Source Ecole Centrale Nantes)
- Outputs
 - Added mass
 - Radiation Damping
 - Hydrodynamic forces
 - Hydrostatic stiffness

Waves induced by motion

Forces Buoyancy

Equation Of Motion

 $(M + M_A(\omega))\ddot{\mathbf{x}} + (D + B(\omega))\dot{\mathbf{x}} + (K + K_H))\mathbf{x} = \mathbf{F}_{\mathbf{e}}$

6 degrees of freedom equation

MOTIONS AND ACCELERATIONS ANALYSIS MODELLING APPROACH – FREQUENCY DOMAIN MODELLING

$$(M + M_A(\omega))\ddot{\mathbf{x}} + (D + B(\omega))\dot{\mathbf{x}} + (K + K_H))\mathbf{x} = \mathbf{F}_{\mathbf{e}}$$

Pitch - 180°

MOTIONS AND ACCELERATIONS ANALYSIS AERO/HYDRO COUPLING – DAMPING

STATION KEEPING ANALYSIS TYPE OF MOORING SYSTEM

THE GLOSTEN

0

- Catenary lines
 - Weight
 - Large Mooring radius
 - Several times water depth
 - ~ 400 m 800 m
 - Farm application?
 - Used for the 5 multi MW FOWT projects

TLP

- Tension
- Low Mooring radius
 - ~ 50 m
 - Good for farm application
- Taut or semi-taut lines
 - Intermediate solution
 - Generally with synthetic rope

STATION KEEPING SYSTEM APPLICATION TOOLS

- All FOWT projects use mainly time domain approach to design their system
 - Motion and acceleration analysis
 - Mooring sizing
- Some numerical tools from Oil&Gas and Onshore wind have been adapted and coupled
 - Orcaflex / No aerodynamic module
 - Deeplines Wind
 - Bladed
 - FAST (free & OpenSource) / No dynamic mooring
- Keep in mind that another software is often necessary to solve the Diffraction/Radiation problem

BASIN TESTS FULL SYSTEM SCALING

Froude scaling

- Well adapted for wave-structure interaction
- Aerodynamics very sensitive to Reynolds number
- □ Hard (impossible) to scale
 - Geometry
 - Thrust
 - Rotor speed and wind velocity
- Typical scale
 - □ Between 1/20th and 1/50th
 - □ Water depth : 100m => 2m to 5m
 - □ Catenary lines ~ 600m => 10m to 30m

BASIN TESTS OTHER STRATEGIES FOR FULL SYSTEM MODELLING

- Need for full system behavior assesment
 - Froude scaling / Reynolds scaling
 - Multi-MW prototypes Expensive & time consuming
- Software In the Loop (SIL)
 - Froude scaling for the mast, floater and mooring
 - □ Fan on top of mast, drived by an aerodynamic sofware

Experimental validation of hydrodynamic behavior

- Wind Tunnel tests
 - Reynolds scaling
 - Hexapod

Experimental validation of

aerodynamic loads under wave induced motions

- CFD
 - Global system modelling
 - High CPU cost

INSTALLATION

INSTALLATION - SPAR

INSTALLATION - SEMISUBMERSIBLE

NEXT STEP FOR FLOATING - HYWIND SCOTLAND

"Roadmap" Hywind-Statoil

SOME CHALLENGES FOR OFFSHORE WIND

TURBINE SIZE AND CONTROLER

FLOATING WIND STILL AT A R&D STAGE

- Need for stability
 - Reduce turbine thrust
 - Increase turbine tolerance to tilt
 - Innovative floater solution
- Flexible system design
 - Mooring lines length
 - Mooring lines materials
 - Export cable / Offset of the FOWT
- Projects technical de-risking
 - □ Global behavior of a complex system
 - Basin test strategy ?
 - CFD ?

IMAGE

Impact on tendons design

- Develoment of fully nonlinear hydrodynamic models (Potential flow / Navier-Stokes)
- High CPU cost/High research cost

HYDRODYNAMIC LOADS BETTER ESTIMATION FOR BETTER DESIGN

Breaking waves

- When steepness increase until a level of about 14%
- Impact loads
- Complex fluid mechanics problem

<u>Test EOL59</u>: bottom slope 5% – $d_{offshore} = 0.8 \text{ m} - T = 2.4 \text{ s} - H_{offshore} = 0.288 \text{ m}$

<u>Test EOL107</u>: bottom slope $2.5\% - d_{offshore} = 1.0 \text{ m} - T = 1.6 \text{ s} - H_{offshore} = 0.280 \text{ m}$

Needs for experimental work

SCOURING

- Sediment convection by fluid
 - Waves
 - Currents
- Scouring issues
 - Can be very critical
 - Modelling
 - Protection

DESIGN METHODOLOGY DESIGN LOAD CASES (DLC)

- Very high number of load cases to design an OWT
 - □ ~ 20000 DLCs
 - Fatigue + Extreme events
 - □ Standards and Guidelines : IEC, DVN, GL, ABS...
- Due to the number of parameters
 - □ Wind
 - Direction / Intensity / Turbulence
 - Wave
 - Direction / Height / Period / Spectrum
 - Turbine
 - Start up / Shut down / Grid loss

□

- Design strategy
 - Response based design ?
 - Fatigue assessment

Wind and Waves induced Force&Moment in the same order of magnitude

edf

V-10mn (m/s)

PROJECT ACCEPTABILITY CRITICAL ISSUE IN THE DEVELOPEMENT

- YYY
 - D XXX

IMAGE

THANK YOU

